
Nonlinear Simulations of Alfvén 

Eigenmodes destabilized by 

Energetic Particles

Y. Todo 

(National Institute for Fusion Science, Japan)

5th ITER International Summer School

(Aix en Provence, France, June 20-24, 2011) 



 many thanks to

 N. Nakajima, A. Ito, T.-H. Watanabe, M. 

Osakabe, K. Toi, M. Isobe (NIFS)

 H. Wang [Univ. Advanced Studies (Sokendai)]

 A. Bierwage, M. Yagi, N. Aiba, K. Shinohara, M. 

Ishikawa, M. Takechi (JAEA)

 S. Yamamoto (Kyoto Univ.)

 H. L. Berk, B. N. Breizman (IFS, Univ. Texas)

 D. A. Spong (ORNL)

 C. C. Kim (Univ. Washington)

 ITPA Energetic Particle Topical Group 2



Outline

 Introduction

 Interaction of energetic particles and Alfvén 

eigenmode in toroidal plasmas

 Simulation models

 EP + MHD hybrid simulation model

 Reduced simulation model with constant AE 

spatial profile

 Simulation of AE bursts

 Reduced simulation

 Hybrid simulation with nonlinear MHD effects
3



Constants of motion in toroidal 

plamas (1)

 In axisymmetric (independent of toroidal angle 

φ) equilibrium (time-independent) fields:

 energy E

 magnetic moment μ

 toroidal momentum Pφ=ehΨ+mhRvφ are constant 

along particle orbit 

(Ψ poloidal magnetic flux, eh and mh are charge and 

mass)
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Constants of motion in toroidal 

plamas (2)

 In the presence of a wave with angular 

frequency ω and toroidal mode number n:

 μ is conserved if ω<<Ωh=ehB/mh

 neither energy nor toroidal momentum is conserved. 

 however, their combination E’=E-wPj/n is conserved. 
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E’ is conserved during the wave-particle 

interaction in axisymmetric equilibrium (1)
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

Energy and toroidal momentum evoution with 

equilibrium field Hamiltonian H0 and wave Hamiltonian H1

dE

dt

H

t



t
H0 H1 



t
H1

dPj

dt
 

H

j
 



j
H0 H1  



j
H1

because 


t
H0  0 (equilibrium) 

and 


j
H0  0 (axisymmetric).



E’ is conserved during the wave-particle 

interaction in axisymmetric equilibrium (2)
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

Suppose the wave amplitude is constant,  

H1 is written in cylindrical coordinates (R,j ,z)

H1 
ˆ H 1(R,z)einj iwt

dE

dt

H1

t
 iw ˆ H 1(R,z)einj iwt

dPj

dt
 

H1

j
 in ˆ H 1(R,z)einj iwt

Then, 
dE '

dt


d

dt
E 

w

n
Pj









 0 is satisfied. 



Conservation of E’ suggests …
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

In wave -particle interaction in tokamak plasmas,  

the conservation of E'  leads to 

E

w

Pj

n


eh

n

Energy transfer between wave and particle (E), 

and change in poloidal mangetic flux ( )

(= radial location;  spatial transport) are related to each other. 

This suggests qualitatively

for high w (such as ICRF) :  E is important 

for low w and high n (such as ITG) :   is important



Why are AE modes destabilized by 

energetic particles? (1)



Q1:  Can particles interact with ideal MHD modes 

with E//  0?

A1:  in toroidal plasmas,  grad - B and curvature drifts 

- >  v  - >  energy transfer through ehv E

Q2 :  Slowing down distribution and Maxwell 

distribution have negative gradient in energy

           
f

E
 0

This leads to Landau damping which stabilizes AE modes.



Why are AE modes destabilized by 

energetic particles? (2)



We should consider the derivative 

keeping E ' E 
w

n
Pj = constant,

f

E E '


f

E


n

w

f

Pj

The toroidal momentum is Pj  eh mh Rvj .

If we apporixmate Pj  eh,

n

w

f

Pj


n

w

f

eh


n

w

1

eh RB

f

r

With B 
rB

qR
   (B 0,  = -1 or 1) 

n

w

f

Pj


n

w

q

ehB

f

rr



Why are AE modes destabilized by 

energetic particles? (3)



Introducing "tempereature" T which replaces energy derivative

f

E
 

f

T
, and w* 

qT

ehB

 ln f

rr
 ,

f

E E '

 
f

T
1

n

w
w*











When the radial gradient of f is sufficiently large,  

the second term 
n

w
w* makes 

f

E E '

 0 to destabilize the AE mode.

This also determines the sign of n /w, i.e. the toroidal propagation 

direction of the AE mode depending on the sign of 
f

r
. 



Why are AE modes destabilized by 

energetic particles? (4) j propagation



Toroidal propagation direction of AE modes destabilized by 

EP spatial gradient can be expressed as follows :

sgn(eh ) sgn 
f

r









sgn(B ) 1:  propagates -j direction

sgn(eh ) sgn 
f

r









sgn(B )  1:  propagates +j direction

ions :  sgn(eh ) 1, electrons :  sgn(eh )  1

usually sgn 
f

r









1, but sometimes with ICRH or ECH sgn 

f

r









 1

with plama current in +j direction, sgn(B )  1



Why are AE modes destabilized by 

energetic particles? (5)  propagation



k//  (mB / r  nBj R) / B  0 gives sign of m / n, 

i.e. the poloidal propagation direction. 

sgn(eh ) sgn 
f

r









sgn(Bj ) 1:  propagates + direction

sgn(eh ) sgn 
f

r









sgn(Bj )  1:  propagates - direction

The results can be summarized very simply. 

AE mode destabilized by EP spatial gradient 

rotates in the EP diamagnetic direction. 



Why are AE modes destabilized by 

energetic particles? (6)



For n  0 modes,  the energetic particle spatial gradient 

does not destabilize the AE modes. 

However, when f is not isotropic in velocity space and 

depends on pitch angle variable  =B/E, f  f (E,)

f

E

f

E 




E

f

 E

The second term on the R.H.S. can lead to destabilization of 

n  0 modes such as GAM.
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Initial value codes for AE 

modes and energetic particles

Method AE modes EP Advantages Codes

Hybrid 

simulation

MHD eq. computatioanl 

particles (or 

Vlasov eq. or 

gyrofluid eq.)

nonlinear MHD 

effects

M3D 

TAEFL 

HMGC 

MEGA 

NIMROD

Reduced 

simulation

AE modes from 

linear analysis

computational 

particles (or 

Vlasov eq.)

reasonable 

balance between 

physics contained 

and demand for 

comp. resources

ORBIT 

HAGIS 

FAC

EUTERPE

MEGA-R

Gyrokinetic 

simulation

comp. particles 

for bulk plasma 

+ GK Poisson 

eq. and 

Ampere eq. 

computational 

particles (or 

Vlasov eq.)

fully kinetic effects GTC 

GYGLES 

GEM

GYRO
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Guiding center approximation 

for energetic particles



u  v //
*  vE  vB

v //
* 

v//

B*
[B //B  b]

vE 
1

B*
[E b]

vB 
1

qhB*
[B b]

// 
mhv//

qhB

b  B / B

B*  B(1 //b   b)

mhv//

dv//

dt
 v //

* [qhEB]



MHD equations coupled with 

EP current density

v

Bj

jjBvE

jjjvvv

E
B

vBjjvv

v















w





w








ww













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EP current density

vdfvfdq Bhh
33* )(

//
bvvj   

Energetic ion current density without ExB drift:

parallel + curvature drift + grad-B drift magnetization current



When we neglect B*  B(1 //b   b) in the drift kinetic equations,  

j h  jh // 
1

B
Ph //  bPh ln B b  

Ph

B
b









 .

If the energetic particle distribution is isotropic ( Ph // = Ph  Ph ), 

 j h B term in the MHD momentum equation is reduced to 

the pressure gradient, i.e.,   j h B = -Ph



The f method



The energetic ion pressures are calculated using the particle weight :  

Ph //(x)  Ph // 0(x) mhv// i
2 wi

i

N

 S(x  x i) ,

Ph (x)  Ph0(x)
B(x)

B0(x)
B(x) iwi

i

N

 S(x  x i) .

The evolution of the particle weight is given by,  

d

dt
wi  Vi

d

dt
f0(E,,Pj ) = -Vi

dE

dt

f0

E


dPj

dt

f0

Pj












 

 [ : normalization factor,  

Vi :  phase space volume which the i - th particle occupies]



Example of TAE mode (1)

21

MEGA results on ITPA 

linear code benchmark 

case [JET shot 77788 

(t=44.985s) P. Lauber]

n=3 mode, Ej



Example of TAE mode (2): 

in LHD

22

MEGA results 

on LHD shot 

#47645

n=1 mode rvr



Vlasov-MHD simulation of AE

evolution

 Linear growth and 

saturation of AE 

instability

 Amplitude 

oscillation takes 

place after the 

saturation

[Y. Todo et al., Phys. Plasmas 2, 2711 (1995)]



Particle trapping by the Alfvén 

eigenmode saturates the instability

AE spatial profile

Time evolution of 

energetic-ion 

distribution in a 

poloidal plane



Comparison of RSAE and TAE
[H. Wang, poster session]

25

RSAE interacts 

primarily only with 

co- or counter-going 

particles, while the 

TAE interacts with 

both.



Fast Frequency Sweeping 

mode & ALE in JT-60U (1)

26

[Shinohara, J. Plasma Fusion 

Res. 81, 547 (2005)]  

[Todo, J. Plasma 

Fusion Res. 83, 

900 (2007)]  

MEGA result. 

Frequency 

sweeping rate is 

comparable to the 

FFS mode.



Fast Frequency Sweeping 

mode & ALE in JT-60U (2)

27

[Shinohara, J. Plasma 

Fusion Res. 81, 547 

(2005)]  

[Bierwage, Plasma 

Fusion Res. (2011)]  

EP redistribution is 

comparable to the 

experiment 

measurement.  
ALE was also simulated with 

HMGC [Briguglio, Phys. 

plasmas 14, 055904 (2007)].



Simulation of ITER weakly 

reversed shear plasma



• Low-n (n=2-5) toroidal Alfven 

eigenmodes (TAE) were found 

to be unstable. 

• Saturation level: 

B/B~10-3

• Redistribution of a particle 

pressure is 5% of the central 

value. 

• An extended MHD model was 

employed. Further 

development is under way. 

[Y. Todo, J. Plasma Phys. 72, 817 (2006)]

Toroidal electric field of the n=3 TAE.



Outline

 Introduction

 Interaction of energetic particles and Alfvén 

eigenmode in toroidal plasmas

 Simulation models

 EP + MHD hybrid simulation model

 Reduced simulation model with constant AE 

spatial profile

 Simulation of AE bursts

 Reduced simulation

 Hybrid simulation with nonlinear MHD effects
29



Model of electromagnetic field



 s(R,j ,z)  X m(r )sin
m

 (nj m wt),



c(R,j ,z) Y m(r )cos
m

 (nj m wt),



  s c ,



A||s(R,j ,z)  X a||m(r )sin
m

 (nj m wt),



A||c(R,j ,z)  Y a||m(r)cos
m

 (nj m wt),



A||  A||s A||c ,



a||m  m(n m/q)/wR0



Es(c)  s(c) ,



B s(c )    (A||s(c )b )

・Spatial profiles and real frequencies 

of eigenmodes are given in advance 

of the simulation. 

・Amplitude evolution of sine part and 

cosine part of each eigenmode is 

calculated independently. 



Time evolution of eigenmode

Similar to [H.L.Berk, 

B.N.Breizman, and 

M.S.Pekker, Nucl. Fusion 35, 

1713 (1995)]. 



dX

dt
  j f Es 2Ws d X,



dY

dt
  j f Ec 2Wc d Y ,



j f  wi

i


m fVi

2(1 i
2)

2B0R0

ˆ z 



Ws(c) 
1

20

Bs(c)
2 

1

20VA
2

Es(c)
2

The time step is not limited by the AE oscillation period. 

It is limited by the growth or damping rate. 

(It is limited by the particle orbit integration.)

similarity to the Interaction 

Representation of quantum 

mechanics
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Alfvén Eigenmode Bursts

Results from a TFTR experiment 

[K. L. Wong et al., Phys. Rev. Lett. 

66, 1874 (1991).]

Neutron emission: nuclear reaction 

of thermal D and energetic beam D 

-> drop in neutron emission = 

energetic-ion loss

Mirnov coil signal: magnetic field 

fluctuation -> Alfvén eigenmode 

bursts

• Alfvén eigenmode bursts take place with a roughly constant 

time interval.

• 5-7% of energetic beam ions are lost at each burst.



Time evolution of TAE mode 

amplitude and stored beam energy

Synchronization of multiple 

modes due to resonance 

overlap (left).

Stored beam energy is reduced 

to 40% of the classically 

expected level (right). 



The losses balances with the beam 

injection when the amplitude of the 

outermost mode reaches to 6x10-3



Poincaré plot of energetic-ion orbits in the 

presence of an AE with constant amplitude 

B/B=2×10-3 at the peak)

 An island structure is formed in the phase space. 

 This is the region of particles trapped by the AE. 



Poincaré plots when particle loss balances 

the injection: resonance overlap of 

multiple modes takes place



Why do the stochastic regions appear 

for a single mode?

(e) n=3 B/B=1x10-3

island structure due to the 

nonlinear resonances

(e) n=3 B/B=2x10-3

KAM surfaces disappear due to the 

overlap of the nonlinear islands  



Reduced Simulation of 

Alfvén Eigenmode Bursts
[Todo, Berk, Breizman, PoP 10, 2888 (2003)]

• Nonlinear simulation in an open system: NBI, collisions, losses

• The TAE bursts in a TFTR experiment [Wong et al. PRL 66, 1874 

(1991)] were reproduced quantitatively. 

Time evolution of energetic-ion density profile.

Store of energetic ions

Destabilization of AEs

Transport and loss of energetic ions

Stabilization of AEs



Summary of the reduced 

simulation of AE bursts

 consistent with the experiment:

 synchronization of multiple TAE modes

 drop in stored beam energy at each burst

 burst time interval

 inconsistent in saturation amplitude

 simulation: B/B~2×10-2

 inferred from the plasma displacement at the 

edge region [Durst et al., PoF B 4, 3707 

(1992)]:  B/B~10-3
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Initial plasma profile and 

numerical conditions



h  h 0 exp[(r /0.4a)2]

q 1 2(r /a)2

ah /vA 16

R0 /a  3.2

vb 1.2vA  , vc  0.5vA

Initial energetic-particle distribution: 

slowing down distribution isotropic 

in velocity space

42

The viscosity and resistivity are =n=10-6vAR0 and =10-60vAR0 .

The numbers of grid points are (128, 64, 128) for (R, φ, z).

The number of marker particles is 5.2x105. 0≤φ≤π/2 for the n=4 mode.



TAE spatial profile (n=4)

The main harmonics are m=5 and 6. 43



Comparison of linear and NL 

runs

βh0=1.5%

Sat. Level (linear) ~ 3x10-3

Sat. Level (NL)     ~ 3x10-3

βh0=2.0%

Sat. Level (linear) ~ 1.6x10-2

Sat. Level (NL)     ~ 8x10-3

The saturation level is reduced to half

in the nonlinear run. 
44



Analysis of dissipation from 

each toroidal mode number

Energy of each toroidal mode number n (n=0, 4, 8, 12, 16)

Energy dissipation of each toroidal mode number n (n=0, 4, 8, 12, 16)

      



En 
1

2
n0vn

2  (B  Beq)n
2 dV

      



Dn  [n0wn

2


4

3
n0(vn )2 jn ( j jeq )n ]  dV

Damping rate of each toroidal mode number n (n=0, 4, 8, 12, 16)

    



d n Dn / 2E4

Total damping rate of all the toroidal mode numbers (n=0, 4, 8, 12, 16)

    



d ALL  Dn

n

 / 2E4
45



Evolution of total damping rate 

The total damping rate (dALL) is greater than the 

damping rate in the linearized MHD simulation (d lin). 

βh0=1.7%

Sat. Level (linear) ~ 1.2x10-2

Sat. Level (NL)     ~ 6x10-3

46



Schematic Diagram of Energy Transfer

n=4 TAE

Thermal Energy

Energetic Particles

n=0 and higher-n modes 

Thermal Energy

Drive

Dissipation Dissipation

NL coupling

Linearized MHD

NL coupled modes
47



Effects of weak dissipation

The nonlinear MHD effects 

reduce the saturation level 

also for weak dissipation. 

βh0=1.7%

The viscosity and resistivity are 

reduced to 1/16, 

=n=6.25×10-8vAR0 and 

=6.25×10-80vAR0

with the numbers of grids 

(512, 512, 128). 

48



Spatial profiles of the TAE and NL modes: 

Evidence for continuum damping of the higher-n 

(n=8) mode

49

ZF



ZF Evolution and 

GAM Excitation

After the saturation of the 

TAE instability, a geodesic 

acoustic mode is excited.

Evolution of TAE and 

zonal flow
50



Summary of NL MHD effects 

on a TAE instability

 Linear and nonlinear simulation runs of a n=4 TAE 

evolution were compared. The saturation level is 

reduced by the nonlinear MHD effects. 

 The total energy dissipation is significantly increased by 

the nonlinearly generated modes. The increase in the 

total energy dissipation reduces the TAE saturation level. 

The dissipation from higher-n modes can be attributed to 

the continuum damping. 

 The zonal flow is generated during the linearly growing 

phase of the TAE instability. The geodesic acoustic 

mode (GAM) is excited after the saturation of the 

instability. The GAM is not directly excited by the 

energetic particles but excited through MHD nonlinearity. 51



SIMULATION OF ALFVÉN EIGENMODE 

BURSTS WITH NONLINEAR MHD 

EFFECTS



Comparison between linear and NL 

MHD runs (jh’ is restricted to n=4)

      





t
  (eqv)  n(  eq )

eq



t
v  p (jeq  j heq )B (j j h)Beq


4

3
(eqv)   (eqw)

B

t
 E

p

t
  ( peqv) ( 1) peqv  n( p peq )

j  jeq

E  v Beq (j jeq )

j 
1

0

B

w   v
      





t
  (v) n(  eq )




t
v  w  v (

v2

2
)  p ( j j h ) B


4

3
( v)   (w)

B

t
 E

p

t
  ( pv)  ( 1) pvn( p peq )

( 1)[w2 
4

3
(v)2 j ( j jeq )]

E vB ( j jeq )

j
1

0

B

w   v

The viscosity and resistivity are =n=2×10-7vAR0 and =2×10-70vAR0 .

The numbers of grid points are (128, 64, 128) for (R, φ, z).

The number of marker particles is 5.2x105.
53
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Simulation with source, loss, 

collisions and NL MHD

 Time dependent f0 is implemented in MEGA

 particle loss (at r/a=0.8 for the present runs)

 for marker particles to excurse outside the loss 

boundary and return back to the inside

 phase space inside the loss boundary is well filled 

with the marker particles

 particle weight is set to be 0 during r/a>0.8

 if the simulation box is extended to include the 

vacuum region, the loss boundary can be set at 

more realistic location  
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f method with time-dependent 

f0 (1/2)

55

    





t
f  f , H 



v2v
v3  v c

3 f




 S(v)

When f0 satisfies



t
f0  f0 , H0 



v2v
v3  vc

3 f0






 S(v) ,

the evoution of f is given by



t
f  f , H0  H1  f0, H1 



v2v
v3  vc

3 f





 0 .

With a definition 
d

dt
f 



t
f  f , H0 H1 v 1 +

vc
3

v3
















v
f ,

the evoution of f is expressed by

d

dt
f  f0 , H1 3f  0 .



f method with time-dependent 

f0 (2/2)

56

    



The evolution of phase space volum V that each particle 

occupies should be considered. Comparison of  two eqs.:

d

dt
fV  SV

and

d

dt
f 3f  S

gives

d

dt
V  3V

We solve the evolution of both f and V of marker particles. 



Time-dependent f0

57    



A solution of 



t
f0 



v2v
v3  vc

3 f0






 S(v) ,

is 

f0(v, t) 
1



1

v3  vc
3

erf
v' -vb

v









 erf

v - vb

v





















with

v' = v3  vc
3 exp 3 (t  tinj)  vc

3





1/ 3

 ,

S(v) 
2



1

v2v
exp 

v - vb

v











2












 ,

vb :  injection or birth velocity of energetic particle

t inj :  injection starts at t = -t inj  0

    



Note :

Here we have neglected { f0, H0} term 

for parallel beam injection 

(zero magnetic moment) 

and w/o finite orbit width effect.



Physics condition

 similar to the reduced simulation of TAE 

bursts at the TFTR experiment

 parameters

 a=0.75m, R0=2.4m, B0=1T, q(r)=1.2+1.8(r/a)2

 NBI power: 10MW

 beam injection energy: 110keV (deuterium)

 vb=1.1vA

 parallel injection (v///v=-1 or 1)

 slowing down time: 100ms

 no pitch angle scattering
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TAE mode spatial profiles

59

 n=2 TAE mode profile  n=3 TAE mode profile



Evolution of stored beam energy 

and TAE amplitude

60

 Energetic particle losses due 

to TAE bursts. 

 Synchronization of multiple 

TAEs.

 /0c=2×10-7vAR0

 Amplitude is measured at the mode peak locations.

n=2 TAE

n=3 TAE



NL MHD effects

 reduction of saturation level

 suppression of beam ion loss

61

n=2 TAE peak amplitude

NL MHD

Linear MHD

stored beam energy

 /0c=10-7vAR0



Effects of dissipation 

coefficients

62

 3×10-7vAR0
 /0c=10-7vAR0  5×10-7vAR0

n=2 TAE 

peak 

amplitude

stored 

beam 

energy

 Higher dissipation  bursts



Comparison of EP pressure 

profiles for different dissipation

63

 EP pressure profiles are very similar among the different 

dissipation coefficients. 

 Higher dissipation leads to slightly higher EP pressure. 

 t=20.0 ms



Comparison of EP pressure 

profiles before and after a burst

64

 EP transport and losses during the TAE burst lead to 

a reduction in pressure profile.

 /0c=5×10-7vAR0



Linear MHD
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Nonlinear MHD
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Summary of TAE burst 

simulation with NL MHD effects

 TAE bursts are successfully simulated with NL 

MHD effects using time-dependent f0.

 saturation amplitude of the dominant harmonic with 

significant beam ion loss: δB/B~5×10-3

 NL MHD effects 

 reduction of saturation level

 suppression of beam ion loss

 Effects of dissipation

 Low dissipation: statistically steady state

 High dissipation: bursts

 Higher dissipation leads to higher stored beam energy
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Outline

 Introduction

 Interaction of energetic particles and Alfvén 

eigenmode in toroidal plasmas

 Simulation models

 EP + MHD hybrid simulation model

 Reduced simulation model with constant AE 

spatial profile

 Simulation of AE bursts

 Reduced simulation

 Hybrid simulation with nonlinear MHD effects
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